Beyond Data Structures

Outline for Today

 Bits and Byles

* Representing things with Os and 1s.
 Data Compression

 Reducing transmission requirements.
 Prefix-Free Codes

* A clever space-saving trick.

* Huffman Coding

* Finding good prefix-free codes.

Bits and Bytes

19t Century Data Transmission

ﬁﬁﬁﬁﬁﬁ

ttttt

2,000 Miles
e

ﬁﬁﬁﬁﬁﬁ

ttttt

2,000 Miles
e

ﬁﬁﬁﬁﬁﬁ

ttttt

2,000 Miles
e

ﬁﬁﬁﬁﬁﬁ

ttttt

2,000 Miles
e

— 0 0 0 —_ 0 — 0 0 o —_ 0

A .- H coce 0 S V 000
B —eee I oo P o——e W e
C —e—o] o —- Q ——e- X —ee-
D _ee K —e- R o—e Y —e—-
E . L P S coe 7 ——ee
F co_o M - T _

G —— N —o U oo

What is the title of this slide?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

An Amazing Read on Telegraphy:
“A Web Around the World”

https://www.filfre.net/2022/01/a-web-around-the-world-part-1-signals-down-a-wire/

20" Century Data Transmission

It's All Bits and Bytes

» Digital data is stored as sequences of 0s and 1s.

* They're usually encoded by magnetic orientation on
small (10nm!) metal particles or by trapping
electrons in nanoscale gates.

* A single 0 or 1 is called a bit.
* A group of eight bits is called a byte.

00000000, 00000001, 00000010,
00000011, 00000100, 00000101, ...

 There are 28 = 256 different bytes.

* Great practice: Write a function to list all of them!

Representing Text

 We think of strings as being made of
characters representing letters, numbers,
emaojis, etc.

» Internally to the computer, everything is
just a series of bits.

* To bridge the gap, we need to agree on
some way of representing characters as
sequences of bits.

» Idea: Assign each character a sequence ot
bits called a code.

ASCII

» Early (American) computers needed some standard
way to send output to their (physical!) printers.

e Since there were fewer than 256 different
characters to print (1960’s America!), each
character was assigned a one-byte value.

» This initial code was called ASCII. It still lives on in
a modified form as UTF-8, which you saw on
Assignment 2.

« For example, the letter A is represented by the byte
01000001 (65). You can still see this in C++:

cout << int('A') << endl; // Prints 65

01001000010001010100000101000100

e Here’s a small character code
segment from the A 01000001
ASCII encodings 5 01000016
for characters.

What is the title of C 01000011

. at i1s the title o
this slide? D 01000100

E 01000101
F 01000110

Answer at
https://pollev.com/cs106bwin23 G 01000111
H 01001000

https://pollev.com/cs106bwin23

01001000

 Here’s a small
segment from the

ASCII encodings
for characters.

e What is the title of
this slide?

character

code

A

01000001

01000010

01000011

01000100

01000101

01000110

01000111

== OO M m O N o

01001000

H

 Here’s a small
segment from the

ASCII encodings
for characters.

e What is the title of
this slide?

character

code

A

01000001

01000010

01000011

01000100

01000101

01000110

01000111

== OO M m O N o

01001000

H 01000101

 Here’s a small
segment from the

ASCII encodings
for characters.

e What is the title of
this slide?

character

code

A

01000001

01000010

01000011

01000100

01000101

01000110

01000111

== OO M m O N o

01001000

H E

 Here’s a small
segment from the

ASCII encodings
for characters.

e What is the title of
this slide?

character

code

A

01000001

01000010

01000011

01000100

01000101

01000110

01000111

== OO M m O N o

01001000

H E

 Here’s a small
segment from the

ASCII encodings
for characters.

e What is the title of
this slide?

01000001

character

code

A

01000001

01000010

01000011

01000100

01000101

01000110

01000111

== OO M m O N o

01001000

H E

 Here’s a small
segment from the

ASCII encodings
for characters.

e What is the title of
this slide?

A

character

code

A

01000001

01000010

01000011

01000100

01000101

01000110

01000111

== OO M m O N o

01001000

H E

 Here’s a small
segment from the

ASCII encodings
for characters.

e What is the title of
this slide?

A

character

01000100

code

A

01000001

01000010

01000011

01000100

01000101

01000110

01000111

== OO M m O N o

01001000

H E

 Here’s a small
segment from the

ASCII encodings
for characters.

e What is the title of
this slide?

A

character

D

code

A

01000001

01000010

01000011

01000100

01000101

01000110

01000111

== OO M m O N o

01001000

An Observation

* In ASCII, every character has exactly the
same number of bits in it.

 Any message with n characters will use
up exactly 8n bits.
 Space for CS106BLECTURE: 104 bits.
* Space for COPYRIGHTABLE: 104 bits.

* Question: Can we reduce the number of
bits needed to encode text?

KIRK'S DIKDIK

A Different Encoding

« ASCII uses one byte per

character. There are 256 character — code

possible bytes. K 000
. If we’re specifically writing 1 001

the string KIRK'S DIKDIK, R 010

which has only seven :

different characters, using 011

full bytes is wasteful. S 100
* Here’s a three-bit encoding 101

we can use to represent the -

letters in KIRK'S DIKDIK. D 110

e This uses 37.5% as much
space as what ASCII uses.

000 001 010 000 011 100 101 110 001 000 110 001 0O
K T R K ' s . DI K D I K

Where We’re Going

* Storing data using the ASCII encoding is
portable across systems, but is not ideal
in terms of space usage.

* Building custom codes for specific
strings might let us save space.

* Idea: Use this approach to build a
compression algorithm to reduce the
amount of space needed to store text.

The Key Idea

* If we can find a way to

give all characters a bit pattern,

that both the sender and receiver know
about, and

that can be decoded uniquely,

then we can represent the same piece of
text in multiple different ways.

* Goal: Find a way to do this that uses less
space than the standard ASCII
representation.

Exploiting Redundancy

Not all letters have the

Same frequency in character frequency
KIRK'S DIKDIK. K 4
Here’s the frequencies I 3
of each letter. D 2
So far, we’ve given R 1
each letter codes of the ' 1
same length. S 1
Key Question: Can we . 1

give shorter encodings
to more common
characters?

A First Attempt

character code

K ©

1

00 01010101110000100010

10

I
D
R 01
S

11

. 100

character

code

A First Attempt

01010101110000100010

K 0
1 1
D 00
R 01
' 10
S 11

100

A First Attempt

character code

K ©

1

00 01010101110000100010

10

I
D
R 01
S

11

. 100

A First Attempt

code

character

01010101110000100010

00

01

10
11

100

1 061 01 01 1 10 O 00 10 © O 10
R R R R I ' KD ' K K '

A First Attempt

character code
K 0
1 1
D 00 01010101114
R 01
' 10
S 11
. 100

The Problem

e [f we use a different number of bits for
each letter, we can't necessarily uniquely
determine the boundaries between
letters.

 We need an encoding that makes it
possible to determine where one
character stops and the next starts.

 Is this possible? If so, how?

Prefix-Free Codes

e A preﬁx-free character ~ code
code is an K 10
encoding system in I 01
which no code is a D 111
prefix of another R 001
code. ' 000

. Hore’ 1 S 1101

ere’s a sample] 1100

prefix code for the
letters in KIRK'S
DIKDIK.

Prefix-Free Codes

character code

K 10

01

111

000

1
D
R 001
S

1101

y 1100

character

Prefix-Free Codes

code

K 10

I 01

D 111

R 001

' 000

S 1101

y 1100

10 01 001 10 000 11011100 111 A1 10 111 01 10
K I R K ' S . D I K D I K

character

Prefix-Free Codes

code

K 10

I 01

D 111

R 001 1001001100001101110011101101110116
" 000

S 1101

y 1100

10 01 001 10 000 11011100 111 A1 10 111 01 10
K I R K ' S . D I K D I K

character

Prefix-Free Codes

code

1001001100001101110011101101110110

K 10
1 01
D 111
R 001
' 000
S 1101

1100

character

Prefix-Free Codes

code

1001001100001101110011101101110110

K 10
1 01
D 111
R 001
' 000
S 1101

1100

character

Prefix-Free Codes

code

1001001100001101110011101101110110

K 10
1 01
D 111
R 001
' 000
S 1101

1100

character

Prefix-Free Codes

code

1001001100001101110011101101110110

K 10
1 01
D 111
R 001
' 000
S 1101

1100

character

Prefix-Free Codes

code

1001001100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10

character

Prefix-Free Codes

code

01001100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10

character

Prefix-Free Codes

code

01001100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10

character

Prefix-Free Codes

code

1001100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10

character

Prefix-Free Codes

code

1001100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10 01

K I

character

Prefix-Free Codes

code

001100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10 01

K I

character

Prefix-Free Codes

code

001100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10 01

K I

character

Prefix-Free Codes

code

01100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10 01

K I

character

Prefix-Free Codes

code

001100001101110011101101110110

K 10

I 01

D 111
R 001
" 000
S 1101
y 1100
10 01

K I

character

Prefix-Free Codes

code

001100001101110011101101110110

K 10
I 01
D 111
R 001
" 000
S 1101
y 1100
10 01 | 001
K I R

character

Prefix-Free Codes

code

100001101110011101101110110

K 10
I 01
D 111
R 001
" 000
S 1101
y 1100
10 01 | 001
K I R

Prefix-Free Codes

« Using this prefix code, we can represent
KIRK'S DIKDIK as the sequence

10010011000011011100111011011106110

* This uses just 34 bits, compared to our
initial 104. Wow!

 But where did this code come from? How
could you come up with codes like this
for other strings?

character code
K 10
1 01
D 111
R 001 1001001100001101116011101101116110
' 000
S 1101
. 1100
character code
K 1111110
1 111110
D 11110
R 1110 111111011111011101111110110160111161111101111110111161111101111110
' 110
S 10

0

How do you find a “good” prefix-free code?

The Main Insight

character

code

K

000

001

010

011

- 0O H

100

wn

101

110

SOF o S
YO OGNS

This special type of
binary tree is called a
coding tree.

character

code

K

000

001

010

011

-0 o H

100

wn

101

110

o AU
SOF o S
01 01 01 @

o AU
SOF o S
YO OGNS

101000001

o AN
me | A
slide? @1 @1 @1 @
OO®OEE

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

101000001

e * A

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

e * A

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

e * A

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

o A

1

What is the 0 ‘ 1 0 * 1
title of this
WOOR®OO® W

10
o A

1

What is the 0 ‘ 1 0 * 1
title of this
WOOR®OO® W

What is the
title of this
slide?

What is the
title of this
slide?

101
o AN

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO U

o AU

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO U

o AU

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

e * A

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

S O

e * A

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

S O
o AU

What is the 0 * 1 @ 1
title of this
WOOR®OO® W

S 00
o AU

What is the 0 * 1 @ 1
title of this
WOOR®OO® W

What is the
title of this
slide?

SOF o S
01 01 01 O
KOOROOC

What is the
title of this
slide?

SOF o S
01 01 01 O
KOOROOC

S 000
o AU

What is the 0 ‘ 1 0 ‘ 1
title of this
dOOR®OO

o AU

What is the 0 ‘ 1 0 ‘ 1
title of this
dOOR®OO

o AU

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

0 1

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

What is the 0 * 1 @ 1
title of this
WOOR®OO® W

What is the 0 * 1 @ 1
title of this
WOOR®OO® W

What is the
title of this
slide?

SOF o S
01 01 01 O
KOOROOC

What is the
title of this
slide?

SOF o S
01 01 01 O
KOOROOC

What is the 0 ‘ 1 0 ‘ 1
title of this
W@OR®OOG® W

What is the 0 ‘ 1 0 ‘ 1
title of this
W@OR®OOG® W

What is the 0 ‘ 1 0 ‘ 1
title of this
WOOR®OO® W

Coding Trees

* Not all binary trees will
work as coding trees.

 Why is the one to the
right not a valid coding
tree?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Coding Trees

* Not all binary trees will
work as coding trees.

 Why is the one to the
right not a valid coding
tree?

- Answer: It doesn’t give
a prefix-free code. The
code for A is a prefix for
the codes for C and D,
and the code for B is a
prefix of the codes for E
and F.

Coding Trees

* A coding tree is
valid if all the
letters are stored
at the leaves, with
internal nodes just
doing the routing. G

* Goal: Find the
best coding tree
for a string.

How do we find the best
coding tree for a piece of text?

Time-Out for Announcements!

Assignment 3

« Assignment 7 was due today at 1:00PM.

* This is your last chance to use late days this
quarter - but don’t use them unless you need
to.

« Assignment 8 goes out today.

 Implement the techniques from this lecture!
 See how much space-saving is available!

 No late submissions will be accepted
without prior approval. Sorry - that’s
university policy.

How do we find the best
coding tree for a piece of text?

Hutfman Coding

character frequency

Right now, we have all the
leaves of the tree. We now
need to build the tree

around them.

0 1 0 1
0 1 0 1
0 1

character

code

K

10

01

111

001

- 0O H

000

wn

1101

1100

0 1 0 1
0 1 0 1

0 1

% Huffman Coding %

* Create a priority queue that holds partial trees.

* Create one leaf node per distinct character in
the input string. The weight of that leaf is the
frequency of the character. Add each to the

priority queue.

 While there are two or more trees in the
priority queue:
 Dequeue the two lowest-priority trees.

« Combine them together to form a new tree whose
weight is the sum of the weights of the two trees.

« Add that tree back to the priority queue.

An Important Detail

Prefix-Free Codes

character code

K 10

01

111

000

I
D
R 001
S

1101

y 1100

character

Prefix-Free Codes

code

K 10

I 01

D 111

R 001

' 000

S 1101

y 1100

10 01 001 10 000 11011100 111 A1 10 111 01 10
K I R K ' S . D I K D I K

character

Prefix-Free Codes

code

K 10

I 01

D 111

R 001 1001001100001101110011101101110116
" 000

S 1101

y 1100

10 01 001 10 000 11011100 111 A1 10 111 01 10
K I R K ' S . D I K D I K

character

Prefix-Free Codes

code

1001001100001101110011101101110110

K 10
1 01
D 111
R 001
' 000
S 1101

1100

Prefix-Free Codes

1001001100001101110011101101110110

Prefix-Free Codes

IDEA WHAT

1 - 0= .

10110

’ I
-

Transmitting the Tree

In order to decompress the text, we have to
remember what encoding we used!

Idea: Prefix the compressed data with a header
containing information to rebuild the tree.

Encoding Tree 110111001011101111000100110101011110..

This might increase the total file size!

Theorem: There is no compression algorithm
that can always compress all inputs.

 Proof: Take CS103!

Summary of Huffman Coding

 Prefix-free codes can be modeled as
binary trees with characters in the
leaves.

 Huffman coding assembles an encoding
tree by repeatedly combining the lowest-
frequency trees together until only one
tree remains.

 We need to send the encoding table with
the compressed message for it to be
decoded, which can increase file sizes.

More to Explore

« Kolmogorov Complexity

« What’s the theoretical limit to compression
techniques?

 Adaptive Coding Techniques

 Can you change your encoding system as you
go?

* Shannon Entropy
A mathematical bound on Huffman coding.
 Binary Tries

* Other applications of trees like these!

Your Action Items

* Read the Guide to Huffman Coding
» It’s a useful companion to this lecture.
* Start Assignment 8.

* It’s a fun one! We think you’ll really like
it.
 Aim to complete Milestone One by Monday.

Next Time

 Graphs
* Representing networks of all sorts.
 Graph Searches

A new perspective on some earlier ideas.

Appendix: UTF-8

Beyond ASCII

« ASCII was invented in 1960s America,
when the main concern was storing

English text.

* It’s comple

ely inadequate for storing the

rich breadth of characters that actually

get used ac
2020s.

ross the whole world in the

 What are we using now?

Unicode

 Unicode is a system for representing glyphs and
symbols from all languages and disciplines.

* One of the most common encodings is UTF-8, which
uses sequences of bytes to represent any one
individual character.

e The basic idea:

« UTF-8 is a prefix code, so less common characters like
and ¥ use more bits than common characters like e and 1.

« UTF-8 encodings are always a full multiple of 8 bits long,
making it easier for computers to work one byte at a time.

 UTF-8 is backwards-compatible with ASCII, so any text
encoded with ASCII is also valid UTF-8.

Option 1

0ddddddd

Option 2

UTF-38

110ddddd

10dddddd

Option 3

1110dddd

10dddddd

10dddddd

Option 4

11110ddd

10dddddd

10dddddd

10dddddd

UTF-8

11110000100111111001010110001100

UTF-8

11110000 10011111 10010101 10001100

UTF-38

11110000 10011111 10010101 10001100

11110000

10011111

10010101

10001100

UTF-38

11110000 10011111 10010101 10001100

11110000

10011111

10010101

10001100

UTF-38

11110000 10011111 10010101 10001100

11110000 10011111

10010101

10001100

0000011111010101001100

UTF-38

11110000 10011111 10010101 10001100

11110000 10011111

10010101

10001100

0000011111010101001100

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167

